8.1

INTRODUCTION

This chapter presents several algorithms and C programs that solve the classic problem
called sorting. The sorting problem has an input sequence of n numbers typically in an
array a[1:n] and the output is a sorted sequence either in ascending order or descending
order. For instance,

input: [ai, a2, a3, . . .,)
output: afa;faz3<...%a,

In practice, the numbers to be sorted are distinct values called as keys. Each key may be
associated with a set of attributes carried around the key. For example, we may wish to
sort a set of employee records consisting of employee id (a unique identifier), name,
address, salary, etc. Here, if we sort the records based on the employee id then we can
assume that the other fields are also sorted. How? Each key will point to the remaining
data of the record and so when we sort the keys (or id numbers) the pointers would still
point to the rest of the data. This is to minimize the unnecessary data movement.

We shall discuss the following sorting methods and their time and space
efficiencies.

= Bubble sort

Quick sort
Merge sort
Heap sort
Selection sort
Insertion sort

304

Chapter8 » Sorting

Consider another set of algorithms with computing time 10*z and n® respectively. You
can not immediately say that the first one is superior, because for all values of n < 10,
the second algorithm is faster.

That is, 10*x10 = 10° versus 10* (with n = 10)
So, we cannot decide that, which of the two algorithms is better unless we know some
thing about the constants associated with their basic operations.

This section gives several asymptotic notations for analyzing the algorithms. We
will study, about O(Big Oh), Q(Omega), and O(Theta) notations briefly.

8.3.1 Big Oh Notation (O)

We use O-notation to give an upper bound on a function f (n), to with in a constant
factor. The upper bound on f{n) indicates that the function f (n) will be the worst-case
that it does not consume more than this computing time.

Definition:

We can also say that “f(n) is of the order of g (n)” and f(n) grows no more than g (n).
When we say that an algorithm has computing time O(g (n)) we mean that if the
algorithmris run on some computer on the same type of data but for increasing values of
n, the resulting time will always be less then ¢ g (n).

The most common computing times fall under one of the categories as shown in
Table 8.1.

Table 8.1 Asymptotic functions

Sl No. Function Name
1 o(1) Constant
2 O(log n) Logarithmic
3 O(n) Linear
4 O(n log n) nlogn
5 O(n’) Quadratic
6 o(n’) Cubic
7 02" exponential

The seven functions shown in Table 8.1 is in the increasing order of computing time
that is,

0(1) < O(log n) < O(n) < O(n log n) < O < 0(n*) < 02"

Fundamentals of Data Structures with C 305

We shall understand how these functions grow with the increase in values of n. The
Table 8.2 and the plot shown in Figure 8.1 illustrate the computing times for six of the
typical functions grow for different values of n.

Table 8.2 Values for computing functions

n logn nlogn n? n® 2"

1 0 0 1 1 2

2 1 2 4 8 4

4 2 8 16 64 16

8 3 24 64 512 256

16 4 64 256 4096 65536
32 5 160 1024 32768 4294967296

Fig. 8.1 Growth rate of common functions, ¢ = 1

For large values of n, the function 2" grows very rapidly and some times it is
impractical also. We will consider few examples that will make you understand further
the linear, quadratic, exponential function better. The g (n) functions will be derived for
a given f(n) based upon the definition of big Oh notation.

8.3.2 Omega Notation (Q2)

So far we have seen O-notation, which described the algorithms upper bound
performance. Some times we wish to find the lower bound behavior of f (n) also. The
lower bound would imply that below this time the algorithm can not perform better.
The algorithm will take at least this much of time (lower bound). It is represented
mathematically usigg_t_he notation £3.

306 Chapter8 » Sorting

An example

To understand the meaning of lower bound, consider the problem of finding maximum
(or minimum) element in a given array of n elements. To do this job, you must iterate
through the entire loop, because with out comparing the first element with all (n-1)
elements you can not obtain maximum or minimum. Therefore, the lower bound for
this problem is n, that is Q(n). Also the upper bound is n, that is O(n). You don’t need
more than n steps for the computing time.

However, consider the case of linear search where the key element may be found in
the first position itself and so the time-complexity is 1 i.e., Q(1). However, if the key is
at the last position then the upper bound (or worst-case) is O(n). Similarly, for not
found case, it is ©(n) and O(n).

8.3.3 Theta Notation (©)

For some functions the lower and upper bound may be same i.e., Q and O will have the
same function. For example, finding the minimum (or maximum) in a given array takes
the computing time Q(n) and O(n). We have a special notation to denote for functions
having the same time-complexity for lower and upper found and this notation is called
as the theta notation ©.

To explain the theta notation we shall try to prove that % n* - 3n = ©(n%) by using the
formal definition of ©-notation.

8.4 BUBBLE SORT

Out of all the sorting methods listed in Section 8.1, the simplest one is the Bubble sort
algorithm. Bubble sort works on the bubbling strategy. At the end of each pass the
largest element is moved to the right most position of the array, assuming that we wish
to sort in an ascending order.

The technique employed in bubbling is to compare the adjacent elements starting
from the beginning of the array. If the element on the left is greater than the element on
the right, then these two elements are swapped. If the left-side element is less than the
right-side, then no swapping is done. Since, pairs of elements are taken at any point of
time, the number of iterations required for the bubbling is n — 1 (n is the number of
elements to be sorted).

Let us try an input sequence with n = 6 to shown the bubbling of largest element at
(n-1) the position.

Fundamentals of Data Structures with C 307

al0:5]1=1(7,5,9,2,3,1]

={5,7,9,2,3,1] {7 and 5 - swapped}
=[572,9,3,1] {7 and 9 - no swap, 9 and 2 - swapped}
=[5,7,2,3,9,1] {9 and 3 - swapped)
=[57,23,1,9] {9 and 1 - swapped}

You can see that largest element 9 occupies the 5th position of the array and we need to
sort now the remaining (n - 1) elements using the same technique. Algorithm 8.1 shows

the bubbling action.
Algorithm 8.1

Algorithm Bubble (a, n)

{
// al0:n-1] : array to be sorted
// n: number of elements
for(i = 0 to n-1) do
{

if(ali] > al[i+1])
swap(a[i], al[i+l]);

}

}

When the first two elements 7 and 5 are compared, the left element is greater than the
right element and so they are swapped. Next, 7 and 9 are compared and no swap is
required and so on:

The algorithm Bubble is called » - 1 times to bring the largest element to the right

in every pass. We will show the remaining passes by continuing the same example
array considered earlier.

Pass2: [5,7,2,3,1,91=(5,2,3,1,7,9]
Pass3:[5,2,3,1,7,9] = [2,3,1,5,7, 9]
Pass4:(2,3,1,5,7,91=1[2,1,3,5,7,9]
Pass 5: [2,1,3,5,7,9]1=(1,2,3,5,7,9]
Sorted sequenceisa=(1,2,3,5,7,9]
The input to Pass 2 is [5, 7, 2, 3, 1, 9] which is the output of Pass 1, and it yields
(5,2, 3, 1,7, 9] and so on. Though we have shown all the elements in each pass, the

bubbling algorithm need not do its task on all elements butn - 1, n-2,n-3,.. 1.
Program 8.1 shows the C code for bubble sort algorithm.

P

310

Chapter8 » Sorting

long as i < j. After all the elements are compared you would notice that the elements
that are left of pivot will be less than the pivot element and the elements to the right of
the pivot will be greater than the pivot element.

a [JTTTNTTIT]
\ JE 3\ J
Y pivaa Y

less than greater than

a[pivot] a[pivot]

The left segment and right segment are sorted by calling the function QuickSort ()
recursively using the method just described.

8.5.1 An Example

Let us now consider a data set and see how quick sort works. All the steps are shown in
Table 8.3.

Table 8.3 Trace of Quick Sort

o] 1 [2 | 3 [4] 5 [6 | 7 il
25 10 72 18 40 11 32 9 1 7
25 10 72 18 40 11 32 9 2 7
25 10 9 18 40 11 32 72 2 7
25 10 9 18 40 11 32 72 3 7
25 10 9 18 40 11 32 72 4 6
25 10 9 18 40 1 32 72 4 5
25 10 9 18 11 40 32 72 4 5
25 10 9 18 11 40 32 72 5 4
1110 9 18 | 25 | 40 32 72
Segment 1 Segment 2
Now the Segment 1 and Segment 2 are recursively sorted.
Segment 1 ‘
0 1 2 3 i Jj
11 10 9 18 1 4
11 10 9 18 2 3
. 11 10 18 2 2
9 10 @ 18

The sorted sequence of Segment 1 =[9, 10, 11, 18]

Fundamentals of Data Structures with C 311

Segment 2
5 6 7 i j
40 32 72 6 8
40 32 72 7 7
7 6

40 72

The sorted sequence of Segment 2 is = [32, 40, 72]
Now the final list, which is fully sorted, is given below

(9, 10, 11, 18, 25, 32, 40, 72]

The algorithm pseudo code is shown in Figure 3.9 and the Program 8.2 shows the
source code for the same.

Algorithm QuickSort

Algorithm QuickSort(a, b, ub)
{
// i and j are local variable
if (Ib < ub)
{
q = Partition(a, Ib, ub);
// partition the given list in to two segments and place
// the pivot element at appropriate position
QuickSort(a, Ib, q); // sort left segment
QuickSort(a, g+1, ub); // sort right segment.

Fig. 8.2 Pseudo code for QuickSort()

Program 8.2
QuickSort
void QuickSort(int a[], int 1b, int ub)
{
int i, j, temp, key, flag = 1;
if (1b < ub)
{

i =1b; j = ub + 1;

key = a[lb); /* mark first element as pivot */
while (flag)

{

i++;

314 Chapter8 » Sorting

8.6.1 The Method
Given a sequence of n elements A[0], A[1], ,A[n-1] are splitted in to two sub files
A(0), A(D),.......... A([n/2]) and A({n/2]+1), LA-1)

Each subfile is separately sorted and the resulting sequences are merged to produce a
single sorted sequence. The Figure 8.4 shows the pseudo code for Mergesort() in which
the list is divided using recursion.

Algorithm MergeSort

Algorithm MergeSort(A, low, high)
{
/! A [0 : n-1] array to be sorted.
// low and high are the indices for the sorting of A.

if (low < high) // at least two elements.

{
mid = (low + high) / 2;
Mergesort (A, low, mid),
Mergesort (A, mid+1, high);
Merge (low, mid, highy),

Fig. 8.4 Pseudo code for MergeSort()

The function Merge() will be presented shortly and meanwhile, we shall show the
concept of dividing with an example. Let, n = 10.

0 1 2 3 4 5 6 7 8 9

A 7, 5, 9, 2, 3, 1, 4, 6, 10, 8
(7. 5, 9, 2, 3] (1, 4, 6, 10, 8]
(7, 5, 91 [2, 3] (1, 4, 6] [10, 8]

(7, 51 (91 [2] [3] (1, 4] (6} [10] (8]
(71 51 (9] (2] (3] [1] [4] [é6] [10] [8]

Merging ‘
(5, 71 [9]1 [2, 3] [1, 4] [6] [8, 10]
{5, 7, 91 [2, 3] [1, 4, 6] [8, 10]
(2, 3, 5, 7, 9] [1, 4, 6, 8, 10]

A {1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Fundamentals of Data Structures with C

315

The splitting is done until the size of the subfile becomes 1. Now we are ready to

present the Merge() algorithm and is shown in Figure 8.5.

Algorithm for Merge()

Algorithm Merge(A, low, mid, high)
{

// B is a temporary array

// B (low : high)

/i, j, h are local variables

n =low;
i=low; // i is for the first segment
j=mid+1; /1 j is for the second segment

while (h <= mid && j <= high) // subfiles not exhausted yet

{
if (A[h] <= A[j])

{
Bli] = A[R]; h++;

Bli] = AUL; j++;
}
i++;

}

if (h > mid) /1 first subfile exhausted —copy remaking elements.

for (k =j; k <= high; k++, i++)
B[] = A[k];

else // second subfile exhausted-copy remaining elements

for (k = h; k <= mid; k++, i++)
B[i] = a[k];

// Copy Bto A

for (k = low; k < high ; k++)
A[k] = Blk];

Fig. 8.5 Pseudo code for Merge()

Let us show the working of MergeSort() with a recursive tree as shown in Figure 8.6
Each node, in the figure, represents a recursive call and in every node the low and mid

316 Chapter8 » Sorting

values are shown. You would also see the elemental value(s) written adjacent to each
node.

The program corresponding to algorithm MergeSort() and Merge() is shown in
Program 8.3 and it can be invoked as,

MergeSort(a, 0, n-1);
[7,5,9,2,3,1,4,6,10,8]

’

[7,5,9,2,/ \[1,4,6,10,8]

[759]/ \[23] [1461/ \[108
[751/ \[91 [21/ \[31 [141/ \[61 [10]/ \[8]
m/ \[51 [1] / \{41

5,5 6,6

1,1

Fig. 8.6 Recursive tree for Mergesort()

Program 8.3
Merge Sort

void MergeSort(int a[], int low, int high)
{
int mid;
if (low'< high)
{
mid = (low + high)/2;
MergeSort(a, low, mid);
MergeSort (a, mid+l, high);
Merge(a, low, mid, high);

Fundamentals of Data Structures with C 317

void Merge(int a[], int low, int mid, int high)

{
int i, h, j, k, b[MAX];
h =1 = low;
j= mid + 1;
while(h <= mid && j <= high)
if(alh]l < aljl)
bli++]= alh++];
else
bli++] =alj++];
if (h > mid)
for(k = j; k <= high; k++)
bli++] = alk];
else
for (k = h; k <= mid; k++)
bli++] = alk];
for (k = low; k <= high; k++)
alk] = bl(k];
}

8.7 HEAP SORT

As we have already discussed in Section 7.10.4 about the heap structure, the
MaxDelete() function can be used to sort a list of n-elements. Recall that
MaxDelete () returns the maximum element out of #» numbers. This largest element,
say e, can be saved in the last position of the array. Call MaxDelete () again, but this
time by sending (n - 1) element so that now it would return the largest of the these
(n - 1) elements. Save this in the last but one position of the array and so on, until # = 1.
The final array a (1 :n] would contain the sorted elements in ascending order.

The Program 8.4 is the result of the above strategy called as heap sort. The
program uses the InitializeHeap () function stored in Init.c file and similarly
MaxDelete () is assumed to be stored in file Mdel . c.

Let us show the sequence of steps in arriving at the final sorted list in array a (see
Figure 8.1) consider the initial array a[1:10] = [70, 12, 30, 10, 8, 15, 20, 11, 5, 2] which
is a heap. In general, the function InitializeHeap () should be called first after
reading the array to make the array into a heap.

318 Chapter8 » Sorting

Program 8.4
Heap Sort

#include <stdio.h>

#define MAX 100

#include "d:\ds-book\c-prog~1\Init.c"
#include "d:\ds-book\c-prog~1\Mdel.c"
void HeapSort(int [], int);

void HeapSort (int a [], int n)

{
int i;
InitializeHeap(a, n); /* heap a */
for (l = n; i >= 1; i——)
a[il = MaxDelete(a, &n);
}

Fundamentals of Data Structures with C 319

3 4 5 6 7 8 9 10
[I | [J20f30]70]

3 4 5 6 7 8 9 10
[[| [i1s]20]30]70]

3 4 5 6 7 8 9 10

[| |12]15]20]30]70]

3 4 5 6 7 8 9 10
[[u]12]15]20]30]70]

3 4 5 6 7 8 9 10
L] [JwJufi2T15T20]30]70]

320

Chapter8 » Sorting

2 3 4 5 6 7 8 9 10
L | [8JwJuf2]T15720]30]70]

)

' 1 2 3 4 5 6 7 8 9 10

@ L |58 fwofuf2]15T20]30]70]
0)

1 2 3 4 5 6 7 8 9 10
[2]s5]8]wfuf2]i5]720]30]70]
(k)

Fig. 8.1 Snapshot of Heap Sort

The initialization of the given array into a heap takes ©(n) time and Max.Delete ()
take O(log n) and hence the over all complexity of heap sort is O(n log n)

8.8 SELECTION SORT

’Selectlon sort uses a different method/’compared to those of the methods discussed

alreadyﬁl a given array a[0:n- 1], determine the largest element and push it to a[n - 1].
Next, outof the’ remammg elements find the largest and move it to a[n - 2] and so on.
We need an algorithm to find the position of the largest element in each pass and in
every pass the number of elements ‘would get reduce(:BCompare this method with
bubble sort, where bubbling concept moved_the largest'in each pass to the (n - 1),
(n - 2), etc., positions. Instead of bubbling we use maximum element finding in
selection sort (see Figure 8.7). -]

0 1 2 3 4 5 6 7 8 9|j f(pass,-l)
(70 12 30 10 & 15 20 11 5 23|00 9
2/ 12 30 10 8 15 20 11 5] 70} 2 8

2 12 5 10 8 15 20 111 30 70| 6 7

2 12 5 10 8 15 111 20 30 70| 5 6

(2 12 5 10 8 11] 15 20 30 70| 1 5

2 11 5 10 8 12 15 20 30 70| ! 4

2 8 5 10] Il 12 15 20 30 70| 3 3

2 8 5] 10- 11 12 15 20 30 70| 1 2

2 51 8 10 11 12 15 20 30 70| 1 1

2] 5 8 10 11 12 15 20 30 70| 0 0

2 5 8 10 11 12 15 20 30 70

Figure 8.7 Snapshot of Selection Sort

Pl

Fundamentals of Data Structures with C 321

The elements in the angle brackets indicate the current size of the elements to be
considered to pick the largest. Variable j is the position of the maximum element in the
array. And (pass-1) is the position to which a[j] is to be swappe; Program 8.5 shows
the resulting C to sort array of n elements using selection sort.

Program 8.5
Selection Sort

void SelectionSort (int a[], int n)

{
/* sort array al0:n-1] in ascending order */
int i, pass, t;
int j;
/* iterate through the array for n-1 passes */
for (pass = n; pass > 1; pass--)
{
j = Max(a, pass); /* position of the largest */
/* swap this with a[n-1], a[n-2], ...al[0] */
t = aljl;
alj] = alpass-1];
alpass-1] = t;
}
}

The complexity of selection sort program is same as bubble sort i.e., o).

8.9 INSERTION SORT

We start with an array in which the first element alone is considered. With just one
element with out any ambiguity, it is a sorted sequence. By inserting the second
element into this one element array, we get a sorted sequence of size 2. Similarly, each
subsequent element being added retains the array in a partially sorted array. When we
finally insert the last element, we get the fully sorted array.

The above strategy is shown in Figure 8.8, considering the array as
al0:9]1 = [70, 12, 30, 10, 8, 15, 20, 11, 5, 2].

The first element 70 in the input array is the sorted sequence of one element
(shown in brackets[]). We start picking up the second element 12 and check for its
appropriate position for insertion. A looping structure is initiated from its previous
element and up to Oth position. In this process, we move the elements to the right side
by one position so that once we find the place for the element we can insert it.

322 Chapter8 » Sorting

0 1 2 3 4 5 6 7
[70] 12 30 10 8 15 20 11
(12 70} 30 10 8 15 20 11
(12 30 70] 10 8 15 20 11

f10 12 30 70] 8 15 20 11
8 10 12 30 701 15 20 11
8 10 12 15 30 701 20 11
8 10 12 15 20 30 70] 11
8 10 11 12 15 20 30 70]
{5 8 10 11 12 15 20 30 70] 2
2 5 8 10 11 12 15 20 30 70]

Fig. 8.8 Snapshot of Insertion Sort

WL v b v b v W OO
NN NN DD NS

W

For example, consider the second line where the partially sorted array is [12, 70] -just
two elements. Element 30 is to be inserted in this sorted sequence. Since 30 is less than
70 we move to the third position (assume that 30 is saved in a temporary variable in the
beginning itself) and then check with 12. Now it is the position for 30, hence insert it.

The current partially sorted sequence is [12, 30, 70]. Program 8.6 is the code for
insertion sort.

Program 8.6
Insertion Sort

void 1InsertionSort(int a[], int n)

{
int j,p.xX.k;
for (3 = 1; j < n; j++)
{
k = aljl;
for (p = j-1; (p >= 0 && %k < alpl); p--)
a[p+l] = alpl;
alp+1l] = k;
} .
}

The outer for loop starts from the 2nd element on wards as the first element is already
in the sorted order (one element). The inner for loop index p scans from the current
element to be inserted (k) until it finds its place. The statement a[p + 1] = k;
finally inserts the key element. Shifting of the elements from the current position p to
its right is done using

alp + 1] = alpl;

Fundamentals of Data Structures with C 323

In the best case the number of comparisons is (n - 1) and in the worst case it is
(n-n/2.

8.10 SHELL SORT

Selection sort moves the elements very efficiently but does many redundant
comparisons. Insertion sort does minimum number of comparisons (best case), but it is
inefficient in moving elements only one place at a time. Because, it compares only
adjacent elements it is poor in terms of moving the elements.

Our aim is to devise an algorithm removing the drawbacks of both selection sort
and insertion sort. For implementing faster data movement and retaining efficient
comparisons of insertion sort a new sorting algorithm, called as Shell Sort was
proposed by D.L.Shell in 1959. It is also sometimes called as diminishing increment
sort.

We compare the elements at a particular distance, d and reduce this distance until it
becomes 1. For example, if we could start with d = 5 and sort all elements which are 5
elements apart.

Then considering d = 3 sort all elements that are 3 elements apart. Finally, when
d = 1, all the elements that are apart by 1 are sorted. The shell sort would become same
as insertion sort when d = 1.

Let us try this idea with a sample array a[0:9] and is shown in Figure 8.9.

all] | a b ¢ d e allla b ¢ af] | a

ol 70 [70 15| 15 512
1] 12 12 12 l 12 215
2| 30 30 11 I 1 1w} s
3| 10 10 515 l 8 |10
4| 8 8 2 I 2 12 | 11
s| 15|15 70 | 11|12
6| 20 20 20 | 20 i) 15| 15
7] 11 11 30 I 30 30 | 20
B 5 10 10 |70]30
9| 2 2 8 |8 20 | 70
(a)d=5 (b)yd=3 ©d=1

Fig. 8.9 Snapshot of Shell Sort

Figure 8.4(a) shows the first pass with d = 5 and the input array is shown in a vertical
fashion, a[]. Adjacent columns (a), (b), (c), (d) and (e) are the sublists for various
values of d.

When 7 =35 we get 5 unsorted sublists and they are,

[70, 15], [12, 20}, [30, 11], [10, 5], [8, 21.

324 Chapter8 » Sorting

Each sublist is sorted using an insertion sort and they are put back into the array.
Figure 8.4(b) shows the next pass, with d = 3 and the input for this is nothing but the
output of Figure 8.9(a). Again, all elements that are apart by distance 3 form sublists as
given below:

(15,5, 20, 8], [12, 2, 30], and [11, 70, 10]

These are again sorted with their distance maintained. For example, the first sublist
[15, 5, 20, 8] that are at positions [0, 3, 6, 9] are sorted as [35, 8, 15, 20] and occupy
again the same positions [0, 3, 6, 9] respectively.

Figure 8.4(c) shows the final pass ie., d = 1. All elements will be sorted in this
pass as the adjacent elements are compared.

Implementation

As suggested by Knuth, we can use the modified insertion sort for implementing Shell
sort. The Program 8.7 is the result of that, where the modified InsertionSort ()
accepts four parameters instead of just two (see Section 8.9).

Program 8.7
Shell Sort
void ShellSort(int a[], int n)
{
int i, inc;
inc = 12;
do
{
inc = inc / 3 + 1; /* consider d = 5, 3, 1 */
for (i = 0; i < inc; i++)
InsertionSort{(i, inc, a, n);
} while (inc > 1);
}

void InsertionSort(int start, int step, int a[], int n)
{

int j, p, x, k;

for (j = start; j < n; j+=step)

{
k = al[j+stepl;
for (p = j; (p>=start && k<alpl); p-=step)
alp+step] = alpl;
al[p+stepl = k;
}

Fundamentals of Data Structures with C 325

This is because that we can not compare adjacent elements, instead compare elements
that are apart by a step (we have used letter d in the Figure). Another important change
required is in the starting of each sublist. In the ordinary insertion sort the beginning
location is always zero. However, in shell sort the beginning location depends upon the
sublist. Each sublist starts at some specific location and ends at some other location.

Function ShellSort () sends these information and also diminishes the value of
d in each iteration using,

inc = inc/3+1;

The +1 ensures that the last past will always have a value 1 for inc. The program uses
starting value for inc as 12 so that we get 5, 3, 1 as subsequent values for inc. After a
large empirical study, shell sort showed the number of moves for a large value of n, is

in the range n'¥ton'®.

8.11 ADDRESS CALCULATION SORT

-

In this method, the most significant digit from each element is extracted and this
decides the address of the linked list for insertion. Let us make things clear - totally ten
linked lists are maintained one for each decimal digit O to 9. When the-most significant
digit of an element is say 5, it is inserted in the 6th linked list and when its value is 9 it
is inserted in to the last linked list irrespective of the other digits.

When there is a collision (numbers having the same most significant digit) the
number is inserted in the same list, but in an ordered fashion. After all the elements are
placed in their respective lists, the ten lists are merged that would give the ordered list
(see Figure 8.5).

We shall assume,

(1) The numbers are two digits only.

N\ (2) To implement the linked list, use the implicit array representation (though you
may use the linked representation also).

(3) h[0:9] is an array that stores the addresses of the 10 linked lists.

Assume that we wish to store 72 in the list, first extract its most significant digit by
using,
msd=x/10=72/10=7.

While inserting 72, ensure that it is put in the ascending order. For instance, when
element 71 (4th element) is considered for insertion, its msd = 71 / 10 = 7 is again falls
in h[7] linked list where 72 is already present. While inserting 71, ensure that an
ordered insertion is done.

al[0:15] =[72, 11, 50, 71, 10, 86, 68, 59, 81, 45, 82, 27, 15, 22,77, 12]

326 Chapter8 »

Sorting

h[0]

—T>NULL

h{1]

Lo P{ul—>nl—>{1s 7]

h{2}

1122 27 7]

h{3]

—r—>NULL

h[4]

—1>145 L~

h[5]

—>150] —{59] “]

h[6]

h{7]

—UL (72| {77]

h[8]

BNy e I 7y o 7y g

h[9]

—l 3NULL

Fig. 8.5 Linked list arrangement of address calculation sort

After inserting all the elements in the lists, the ten linked lists are merged together to
form the final sorted array. Now, the steps for the address calculation sort can be
summarized as,

Step 1:

Step 2:

Step 4:

Step 6:

Initialize the table h [0:9] with -1(or NULL)
Initialize each linked list with —1 (or NULL)
Repeat thru Step 3 for i =0ton
Step3:x=ali];
msd =x/10;
insert x is h [msd] in an ordered fashion.
Repeat thru Step 5 for =0to 9
StepS:p=t[jl; /I get the address of the jth linked list.
while p <>-1do
put all the elements from the list into the array;
Return the sorted array a.

In this pseudo code, we have assumed that t is a linked list represented as an implicit
array for address calculation sort.

The C source code for address calculation sort based upon the pseudo code just
explained appears as Program 8.8.

Fundamentals of Data Structures with C 327

Program 8.8

Address Calculation Sort

#define MAX 80
struct node

{

Y

int info;
int link;

/* linked lists availability list */

struct node list[MAX];

int avail = 0; /* header for the availability list */
int sf{10]; /* for address of each linked list */

void AddrCalSort({int al[], int n)

{

int i,j,p,x;
int digit;
avail = 0;
/* create the availability list as a linked list */
/* like a heap in dynamic allocation */
for (1 = 0; 1 < n-1; i++)
list[i).link = i + 1;
list[n-1].1link = -1;

/* Initialize the sub files with NULL i.e. -1 */
for (i = 0; 1 < 10; i++)
sf[i] = -1;

/* insert the elements in the appropriate list */

for (i = 0; 1 < n; i++)

{
x = alil;
digit = x / 10; /* get the first digit */

/* search and place the element in the linked list */
Insert (digit, x);

}

/* reconstruct the array */
i = 0;
for (j = 0; j < 10; Jj++)
{
p = sf(j);

328 "Chapter8 » Sorting

}

while (p != -1)

{
ali++] = list([p]l.info;
p = list([p].link;

void Insert(int digit, int x)

{

}

int q;
int pred; int temp;
q = getnode(); /* allocate node */

list[q] .info = x;
/* first node insertion for a particular subfile */
if (sfldigit] == -1)
{
sfldigit] = q;
list[qg].link = -1;

return;
}
pred = -1;
/* find the address for insertion */
for (temp = sf[digit]; temp != -1 &&

x > list[temp].info;
temp = list[temp].link)
pred = temp;
if (pred == -1) /* insert as the first element */
{
list({qg].link = temp;
sf(digit] = q;

}

else /* insert after */

{
list[g].link = list[pred].link;
list({pred].link = q;

}

/* function to return one location */
int getnode ()

{

int temp;
if (avail == -1)
{

printf ("Overflow\n") ;

Fundamentals of Data Structures with C 329

exit (1) ;
}
temp = avail;
avail = list[avail].link;
return temp;

8.12 RADIX SORT

Suppose that a list maintains the student data with the attributes [regno, name, marks].
Assume that the marks are in the range 0 to 100 - which is the case in most of the
Universities. We are to sort the student data based on their marks scored. An ordinary
method might take O(n?), but we will use radix sort to increase the efficiency to O(n)
In radix sort, we do not need to take care about the range as we can sort n integers
in the range 0 to n° - 1 where c is a constant. Each number in the input is decomposed
using some radix r.
For example, using r = 10 (decimal) the number 478 can be decomposed to

478 =4*10*+7 * 10' + 8 * 10°
For sorting in this method, we first decompose the number into its digits and sort based
on left significant to most significant digits. This is shown in Figure 8.6.
e / - v >
a0 : 9] =[216, 521, 425, 116, 91, 515, 124, 34, 96, 24]

Step 1: Put the input numbers into one of O to 9 bin or bucket based on the least
significant digit.

Bin[0] | -

Bin[1] | 521 91
Bin[2] | -

Bin[3] | -

Bin[4] | 124 34 24
Bin[5] | 425 515
Bin[6] | 216 116 96
Bin[7] | -

Bin[8] | -

Bin[9] | -

(a) Sort on least significant digit

Step 2: Collect all these bins to form a single list.

330

Chapter8 » Sorting

b
[521 91, 124, 34, 24 425 515 216, 116 96]
Step 3: Now sort on the 2nd least significant digit.

Bin[0] | -

Bin[1] | 515 216 116
Bin[2] | 521 124 24 425
Bin[3] | 34

Bin[4] | -

Bin[5] | -

Bin[6] | -

Bin[7] | -

Bin[8] | -

Bin[91 | 91 96

Sort on 2nd least significant digit

Step 4: Merge all the bins again
=[515, 216,116, 521, 124, 24, 425, 34, 91, 96]
Step 5: Put the numbers into the bins based on most significant digit.

Bin[0] | 24 34 91 96
Bin[1] | 116 124

Bin[2] | 216

Bin[3] | -

Bin[4] | 425

Bin[5] | 515 521

Bin[6] | -

Bin[7] | -

Bin[8] | -

Bin[9] | -

(c) Sort on most significant digit

Step 6: Merge all bins.
=[24, 34,91, 96, 116, 124, 216, 425, 515, 521]

This is the final sorted sequence. Now, the question is how to decompose the digits of a
number? We use a simple expression to obtain the least significant digit to the most
significant digit as follows,

x %10; (x % 100)/ 10; (x % 1000y / 100; . . .
For example, let x = 425, then

Fundamentals of Data Structures with C 331

The least significant digit is =425 % 10=5
The second least significant digit is = (425 % 100) / 10=25/10=2
The most significant digit is = (425 % 100) / 100 =425/100=4

= Method-1 [Array implementation]

The first method is based on the sequential storage in which each bin is represented as a
queue. Each queue has a front and rear pointer. When the elements are put in the bins,
the corresponding queue pointers are updated. This is exactly similar to the insertion of
an element in an ordinary queue.

The next step is to collect all these queues so that sorting can be done on the
second least significant digit. This collection process involves physical movement of
data. To avoid such movements, we can adjust the links as if that they are stored in an
implicit array based linked list. The resulting code is shown in Program 8.9.

Program 8.9
Radix Sort — Array Implementation

void RadixSort (int a[], int n)
{
int £([10], r[10];
struct
{
int info;
int link;
} node[MAX];
int ex, first, i, j, k, p, 4, Vv:

for (i = 0; 1 < n-1; i++)
{
node[i].info = al[i};
node[i].link = i + 1;
}
node[n-1].info = a[n-1];
node[n-1].1link = -1;
first = 0;
for (k = 1; i < 5; i++)
{
for (i = 0; 1 < 10; i++)
{
rl{i] = -1; f£[(i] = -1;
} ¢ .
for (; first != -1; first = node[first].link)
{

first;
node[p] .info;

p
Y

[}

332

Chapter8 » , Sorting

ex = pow(1l0, k-1);
j = (y/ex) % 10;
qa=rxljl;
if (q == -1) £[3] = p;
else nodelq).link = p;
r[j]l = p;

}

/* combine the queues */

for (j = 0; j < 10 && £[j] == -1; j++);

first = £([j];
while (j < 9)

{
for (i = j+1; i && fli] == -1; i++);
if (1 <= 9)
{
P =1;
node([r[j]].link = £f[i];
}
] =13
}
nodelr([pl].link = -1;
}
/* copy the elements from list to a */
for (i = 0; 1 < n; i++)
{

al[i] = node[first].info;
first = node[first].link;

= Method-2 [Linked Implementation]

The elements are first assumed to be stored in a singly linked list. Next, each bin has
two pointers bottom and top. Since, there are ten bins; instead of having scalar
pointers we must have vector pointers. This means that {bottom([0], top[0]},
{bottom[1], top(1]l},..., {bottom[9], top[9]} are the pointer combinations
for each bin starting from 0 to 9. The pointer bottom[b] points to the last element
and top [b] points to the first element of bin b. For example, in Figure 8.6(a) bin 4
consists of three elements 124, 34, and 24. Now, bottom[4] will points to 24 and
top (4] will point to 124,

The implementation involves distributing the elements to various bins and updating
the bottom and top pointers for each digit position. At the end of each significant digit,
collection phase links the top and bottom pointers such that it becomes a linked list.
Once the kth digit (where k is the maximum number of digits allowed in a number) is

Fundamentals of Data Structures with C 333

processed, the linked list would contain the sorted list. Program 8.10 shows the source
code for RadixSort () function with linked lists.

™

Program 8.10
Radix Sort — Linked list implementation

void RadixSort (int a[], int n)

{ -
NODE t = NULL;
int 1i;
/* create the linked list */
for (1 = 0; i < n; i++)
t = Create(t, af[i]); /* creates a linked list */
/* out of the array */
t = RSort(t, 10); /* radix is 10 */
/* copy sorted list to a */
for (i = 0; 1 < n; i++)
{
afi]l] = t->info;
t = t->1link;
}
}

NODE RSort (NODE first, int range)
{

int b, k, 4, div, x;

NODE bottom[MAX], top[MAX];

NODE vy;
int digits = 4; /* max. no. of digits allowed */
d = 10;
div = 1;
for (k = 1; k < digits; k++) {
y = NULL;
for (b = 0; b <= range; b++)

{ bottom[b] = NULL; top[b] = NULL; }
for (; first; first = first->link)

X first->info;

b (x $ d) / div; /* decompose into digits */
/* put x into appropriate bin */

if (bottom[b]) /* bin has elements */

inn

334

Chapter8 » Sorting

topl[bl->1link = first;
top[b] = first;
}
else /* add to empty bin */
bottom[b] = top[b] = first;}
/* merge all the bins */
for (b = 0; b <= range; b++)
if (bottom[b])

{
if (y)
y->1link = bottom[b];
else
first = bottom[b];
Yy = top[b];
}

if (y) y->1link ‘= NULL;

d =d * 10; /* for next digit position */
div = div * 10; }

return first;

This function RadixSort (), first creates the linked list from the given array a and
sends the list to RSort ().

In the function RSort () the outer most for loop is used to sorting on each
significant digit (kth digit). Also we assume a maximum of 3 digits are allowed in the
input sequence. The next for loop picks each number and decomposes into individual
digits (first iteration, the least significant . digit, and so on), Then the numbers are
distributed to the appropriate bins. Once the distribution is over, collection phase starts
and is done with another for loop ranging from bin 0 to 10.

The pointer £irst points to the first element of first bin (1 £-else clause) and
the subsequent bins are linked, provided there are elements in the bin. Finally, the
element are copied back to the array a in the function RadixSort () .

8.13 SUMMARY

* The sorting problem has an input sequence of n numbers typically in an array
a[l:n] and the output is a sorted sequence either in ascending order or descending
order. For instance,

ianIt: [ah ax as, ..., an]
output: af<aySaz<...<a,

Fundamentals of Data Structures with C 335

Time and space complexity are two important concepts that are required in
algorithmic design.

In we do not worry about the time taken by a program, certain programs may take
even years of computer time (examples: traveling sales person problem, colouring a
map, etc.) we cannot wait for years to get the results.

The space complexity of a program is the amount of memory needed to run a
program. The time complexity is the amount of time a program takes for the
execution.

The word asymptotic means that it is the study of functions of a parameter n, as n
becomes larger and larger without bound. In other words, we are concerned with
how the running time of an algorithm increases with the size of the input.

Three mathematical notations were introduced: O(Big Oh), £XOmega), and
6(Theta). :

The big Oh notation is defined as, f (n) = O(g (n)) (read as “f of n is equal to the
big Oh of g of n” such that there exists two positive constants ¢ and no with the
constraint that | f(n) <c|g(n)|forall n2 n.

The big Omega notation is defined as, fin) = Q(g(n)) (read as “f of n is equal to
omega of g of n”) iff there exists positive constants ¢ and ng such that for all n > n,,
| fin)|2c|egn)] ‘

The big Theta notation is defined as, f{n) = ©(g(n)) iff there exist positive constants
¢ and ¢, such that for all n > ng, ¢, | g(n) | < | Ain) | < 2| g(n) |

Bubble sort works on the principle of bubbling strategy. This means that, At the
end of each pass the largest element is moved to the right most position of the
array, assuming that we wish to sort in an ascending order.

Merge Sort works on the principle of simple merge. A simple merge is to combine
two ordered lists into a single ordered list.

“Heap sort works on the basis of Max Heap. The root node of the heap (the max

element) will occupy the last position and the second largest will occupy the last
but one, and so on.

Several other sorting algorithms were discussed: shell sort, address calculation sort,
selection, insertion, and radix sorts.

8.14 EXERCISES

8.1

8.2
8.3

Define the following:
(1) Big Oh notation
(2) Omega Notation
(3) Theta Notation

What is the significance of finding the time complexity of a program? Discuss.
Considering the following data set, trace the Bubble sort program.
[45,23,1,78,9, 3, 47, 22, 40, 99]

336

Chapter8 » Sorting

8.4

8.5

8.6
8.7

8.8

89

8.10

Write an efficient bubble sort program. Derive an expression for the number of
passes required for » numbers.

Write the Quick Sort algorithm and trace the same with the following data set:
(3, 6, 56, 8, 23, 44, 20, 5, 10, 78]
Explain the simple merge process and write a C function that sorts an array of n
numbers using Merge Sort.
Using the data set of Problem 8.5 write the recursive tree of Merge sort.

Show the complete sequence of steps in sorting a list using Heap'Sort. You may
consider the same data set of Problem 8.4.

Write algorithms for the selection sort and insertion sort. What are the
differences between these two sorting algorithms?

In Shell sort of Section 8.10, we started with d as 5. How to select the initial
value for d? Take a large array and sort it using the shell sort. Vary the initial
value of d and write report about the behavior of the sorting process.

Compare the addressing calculation sort and radix sort. Give C programs for
both.

Chapte Iul

Searching

9.1 INTRODUCTION

The searching problem can be formally stated as:

Given a set of n numbers a[l : n] = [a;, a5 a3 ... , a,] and a key k, the task of a
searching algorithm is to return the index i if k is in the list or return a special value
NULL or -1 if k does not appear in a.

Searching for a key as stated above is required almost in every application.
Consider for example a student information system that contain the student details like
register number, name, marks, attendance, address, etc, in the form of a table. We may
wish to search for a particular student record by specifying his/her register number as
this would search and return the record or its index uniquely. The same is true in an
employee information system or in web based applications. We are all familiar with the
famous web site http://www.google.com that helps the users to search for a particular
item given in terms of a phrase.

The algorithms that we develop in this chapter assume that the list is a static array
a and its size n. The return value will be an integer value of the index of the key or -1
depending upon whether it exists in the list or not. Following are the searching
algorithms that we study in this chapter: =

= Linear Search

» Binary Search

= Interpolation Search
= Hashing

338 Chapter9 » Searching

Each method will be explained with the basic concept behind the design, the C code
and implementation issues.

9.2 LINEAR SEARCH

The most straight forward method to search for the key is to begin at one end (Ist
location) of the list and scan down it until the key is found or the other end (nth
location) is reached. This method is called as the sequential search or linear search.

To implement the above strategy, all that we require is a simple looping structure
to scan the list from O to n-1 in the array a. In every iteration, we check the array
element a[i] with the key and if it is equal we have found the key and its index i can be
returned. If the loop continues until the end of the list, then last statement will be
returning —1 indicating that the key is not found in the array. Program 9.1 uses this
logic.

Program 9.1
Linear Search

int LinearSearch (int al[], int n, int key)

{
/* return */
int 1i;
for (i = 0; 1 < n; i++)
if (a(i] == key)
return i;
return -1;
}

When the key is found in the list, the loop gets terminated in the middle because of the
return statement. If the control reaches return -1; this means that the key does
not match with any of the array element.

In the case of the linear search, if the key is found in the 1st position itself then the
for loop need not be executed for n times as explained already. Then the number of
comparisons is just 1. However, if it’s situated at the last location, then n comparisons
would be made.

This amounts to the probability of the key being in the 1st, or second or in the last
position. If the key is found in the first position itself, then it is called as the best case,
where as if it is found at the last, then it is called as the worst case. We are also
interested in the average case.

Fundamentals of Data Structures with C 339

Time Complexity
For the sake of curiosity, we can show the average number of comparisons of linear
search.
Average comparisons = number of comparisons upto Oth position
+ number of comparisons upto 1st position
e PP PPN

+ number of comparisons upto ith position
+ number of comparisons upto nth position
_1424---+n

The best case time complexity for the linear search is O(1) and the worst case is O(n).

9.2.1 Recursive Linear Search

The Program 9.1 is an iterative version for searching an element in an array. The same
task can be accomplished using the recursive technique. We need to design the
recursive version by comparing the key with the array elements starting from (n-1)th
position down to Oth position. If there is no match, then we recursively call the search
function by reducing n by 1, i.e. n-2, n-3, ..., 0. When n goes down to a negative value,
it is obvious that the key is not found in the array.

The Program 9.2 shows the RecLinearSearch () function employing recursive
technique. '

Program 9.2
Recursive Linear Search

int RecLinearSearch (int al[], int n, int key)

{
if (n < 0) return -1;
if (a[n - 1] == key)
return n;
else

return ReclinearSearch(a, n-1, key);

342 Chapter 9

}

>

Searching

mid = (low + high) / 2; /* divide the list */
if (key == a[mid])
return mid + 1; /* found */

if (key < a[mid))
high = mid-1; /* update low or high */
else low = mid+1;

return -1; /* not found */

The binary search algorithm works based on the concept of binary search tree where
searching is made fast by traversing the binary tree towards left subtree or towards the
right subtree. The time complexity of binary search is,

Best case Worst case Average case
1. Successful Search (key found): oQ) O(log n) O(log n)
2. Unsuccessful case (key not found): O(log n) O(log n) O(log n)

9.3.1 Recursive Binary Search

The binary search algorithm can also be designed to work with recursive technique. The
terminating condition is almost same as the iterative version, i.e. we invoke
RecBinarySearch () function as long as 1ow < high. During each invocation, we
update the low or high pointer in the calling sequence. The C code is shown in
Program 9.4.

Program 9.4

Recursive Binary Search

int RecBinarySearch(int x[], int n, int key,

{

int low, int high)

int mid;
if (low > high) return -1;

mid =

(low + high) / 2; /* divide the list */

if (key == x[mid])

return mid; /* key found */

if (key < x[mid]) /* key not found */

else

return RecBinarySearch(x, n, key, low, mid-1);

Fundamentals of Data Structures with C 343

return RecBinarySearch(x, n, key, mid+1l, high);

Note that there are two extra parameters in the function 1ow and high. Therefore, the
function should be called with the following syntax initially sending 1ow as 0 and high
asn-1,

RecBinarySearch(a, n, key, 0, n-1);

The subsequent calling of this function modifies the value of 1ow or high as you see
in the program. The function returns -1 for not found case and for found case the key's
index.

9.4 INTERPOLATION SEARCH

Another variant of binary search is not to use the middle element of a subset to compare
to the key item, but to guess more precisely where the key being sought falls within the
current interval of interest (think of searching in a telephone directory again). This
improved version is called interpolation search. The new element is calculated as
follows:

mid = round(low + (key - al[low]) /
(alhigh] - allow]) * (high - low));

Using this new technique, we shall modify the binary search program of 9.3 as
Program 9.5.

Program 9.5
Interpolation Search

int InterpolationSearch (int a[], int n, int key)
{
int low, high, mid;
low = 0; high = n-1;
while (low <= high)
{
mid = low + (key-al[low])/(alhigh]-a[low])
*(high-1low) ;
if (key < a[mid]l)
high = ((low + mid - 1)/2)-1;
else if (key > a[mid])
low = ((mid+1 + high)/2)+1;
else
return mid;

344 Chapter9 » Searching
}
return -1; /* not found */
}
In the interpolation search also we initialize 1ow to 0 and high to n-1. However, the
low and high are updated in a different way. The rest of the statements are similar to
Program 9.3.
For all the searching functions Linear, Binary and Interpolation, Program 9.6 can
be used as amain () or driver program.
Program 9.6
Driver program

#include <stdio.h>
#define MAX 100
int BinarySearch (int [], int, int);

void main{()

{
int a[MAX];
int n, i, key, y;
printf ("Enter the Max. no. of Elements: ");
scanf ("%d", &n);
printf ("Enter Elements in ascending order: ");
for (i = 0; i < n; i++)
scanf ("%d", &ali]);
printf ("Enter the Key to be searched: ");
scanf ("%d", &key); ‘
/* call appropriate search function */
y = BinarySearch(a, n, key); ’
if (y == -1)
printf ("Element not found\n");
else printf("Element found at = %d\n", vy);
} . T

Most of the search functions accept the array, size of the array and the key to be
searched. In the Program 9.6, the statement y = BinarySearch(a, n,
key) ;should be replaced with the name of the search function.

Fundamentals of Data Structures with C 345

9.5 HASHING

Many applications require a dynamic set that supports only the dictionary operations
Insert, Search, and Delete. For example, a compiler maintains a symbol table, in which
the keys are arbitrary character strings that correspond to identifiers in the language.

A hash table is an effective data structure for implementing dictionaries. In the
worst case, hashing may take @(n), but with suitable assumptions we can achieve an
expected time of O(1) to search for an element in a hash table. A hash table is stores the
keys that are mapped using a hash function.

Assuming, k is the key to be stored in the hash table, fis the hash function and M is
the hash table size, then & is stored in position f (k). To search for the key k, first it is
mapped using the hash function. Then we see if there is an element at f (k). If so, we
have found the element, otherwise the element is not found. This is of course an ideal
case that we have presented. We shall see soon the anomalies in this method and how to
correct it.

Example

For this example we shall consider the hash function as,
f)=k%M09.1)

The hash table is a simple array, A[0 : M] in which the hashed key k will be stored.
Figure 9.2 shows a hash table 4[0:9] of size 10 and the elements to be stored are :

[23, 56, 111, 9, 200]
The hash values are calculated using Equation 9.1 for all the elements and are shown

below:
f23) =23%10 =3
f(56) =56% 10 =6
f@a1ny =111% 10 =1
f@® =9%10 =9

f(200) =200 % 10 =0

We wish to insert element 23, for which we calculate the hash value as 3 and this
- element will be stored in A[3]. Similarly all the elements are stored in the hash table h
as shown in Figure 9.2.

h 0 1 2 3 4 5 6 7 8

9
[2o0]uiin | 23] | [s6e| | |9 |
Fig. 9.2 Hash table

Now what ever be the key element to be stored in the hash table, it would fall in the
address range 0 to 9, because of the mod (%) operator and the table size M. When we
want to search for a key whose value is 56, it is first hashed using Equation 9.1 and the

346

Chapter9 » Searching

element at h[k] will be checked whether it has an element or not (empty). In this
example, since the location 6 is not empty, we get a successful search. On the other
hand if we search for 45, the hashed value is 45 % 10 = 5, and A[5] is empty, Hence, it
is an unsuccessful search. On an average the time complexity of this ideal hash method
is O(1).

However, this method has drawbacks. Suppose we wish to insert the element 83.
As explained already, it is hashed and the address we get is 3. But A[3] is already
occupied with element 23. Note that we can insert an element only when the hash table
location is empty. This situation is called as collision. This type of situation may occur
for many elements that produce the same hash address — 13, 3, 203, 63, 73, 113, etc., all
these give hash address as 3 producing collisions.

We shall study several techniques to resolve collisions which will be our major
topic in this section. One possible solution may to use a good hash function. The
following section discusses that.

9.5.1 Hash functions

In this section, we discuss some issues regarding the design of good hash functions
namely: truncation and folding. The method that we have already used in Equation 9.1
is called as hashing by division There are two important considerations that should be
considered in the design of go?)?f hash function (1) the hash function should not
consume more_time in calculating the hash address. (2) the function should not yield
more collisions.

Truncation

This method picks only few digits of the number and appends these digits to form the
hash address. For example, we may wish to store the telephone numbers in the hash
table. Each telephone number is a 7 digit number. We can extract the first, third and
fifth digit from the beginning of the number and concatenate these digits to form the
address.

For instance,

h[6605789] = 607, h[6661890] = 668 and A[3351834] = 358

We need the table size M as 1000 to store the elements and you can notice that this
method produces collision rarely. The only requirement is that all the elements should
be of fixed size. All the telephone numbers in Bangalore City are of 7 digits. Selection
of M also plays an important role in reducing collisions. If you select M = 100, then
you must select only two digits, say 2 and fourth digits. Then there will be more
collisions that you can expect.

Folding

Another method is to pick group of digits, first two digits, second two digits and last
three digits. Then, add these groups to get the final address. If the digits are numbered
dy, d,,...,d;, then the hash address is

=d, d2+d3d4+d5d6d7

Fundamentals of Data Structures with C 347

Considering again the same example of Bangalore telephone numbers,

h[6605789] = 66 + 05 + 789 = 860
h[6661890] = 66 + 61 + 890 = 017
h[3351834] =33 + 51 + 834 =918

In the second case, we get a four digit number after adding 66 + 61 + 890 = 1017 in
which we discard the most significant digit.

9.5.2 Collision resolution techniques

One of the primary requirements in hashing is to have a smaller hash table size for a
larger range of the key. This section concentrates two methods when collision occurs
namely

» Hashing with Linear Open Addressing

= Hashing with Chains

Though an introduction has already been given in Figure 9.2, we shall discuss the
implementation issues in length.

Hashing with Linear Open Addressing

Referring to Figure 9.2, the collision occurred when we try to insert element 83, but
where to insert this element? The easiest thing to do is search the table for the next
available location and place 83. This method is called as linear open addressing. In the
present example, the next empty location is h[4] and hence it is inserted in that place.
(see Figure 9.3). ’

h 0 1 2 3 4 S 6 7 8 9
o[l [PAg Ts6[[9]

Fig. 9.3 Hash table with 83

R0 12 3 4 5 6 1 9
[200 [1in | [23] 8 NN 56 [| [9 |

Fig. 9.3a Hash table with 104

Next, if we get an element 104 for insertion its hash position is already occupied by 84
and so it is placed in A[S5] (see Figure 9.3a).

How to get the next empty hash table location when a collision occurs? We can use
a technique called rehashing. If the hash address is empty we can insert the key, else
rehash the key using the following formula,

fl)=k%M
fF&=Ffk+1)%M

348 Chapter9 » Searching

f (k) is the hash function that we have already seen and f* (k) is the rehash function. For
example, let us assume & = 83.

f(83)=83%10=3

fFR=CB+1)%D10=4

Therefore, we can insert element 83 in the location A[4].

Implementation

We shall develop two functions Insert () and Search() to insert a key in the hash
table and search the hash table for a given key respectively. The rehash method will be
used for getting an empty location. Additional functions Initialize() and
Hsearch () will be used for insertion and search operations.

Initialize()

The hash table is a simple C array h[0 : Size], where Size is the table size. We
also assume that the table will be initialized with ~1 (empty) before we attempt any of
the hash table operations. Following piece of code (Program 9.7) does the required

initialization.
#define Size 10
#define empty -1
#define true 1
#define false 0
Program 9.7

Initialization of hash table

void Initialize (int h [])

{
int 1i;
for (1 = 0; i < Size; i++)
h(i] = empty; /* empty */
}
Insert()

This function is designed to accept the key to be inserted and obtains the hash address
using a hash function. If the home address is already occupied by an element, then
rehashing is tried in a wrap around fashion, until wether an empty position is reached
or table is full. In case of table full, it returns false, otherwise the key is inserted. To
obtain the hash address, we invoke a function HSearch (). The main functionality of
this function is to return the hash address, if any. See Program 9.8 for the C code.

The HSearch () function tries to see that the hashed value is empty. If so, its
index, j is returned so that insertion can be done. Also this function tries for rehashing

Fundamentals of Data Structures with C 349

to locate an empty position in a wrap around fashion. Suppose if there is no vacancy it
returns false and no insertion can be done.

-~

Program 9.8
Insert a key in the hash table

int Insert (int h [], int k)

{
int j = HSearch(h, k)
if (h(j] == empty)
{
hij]l = k; /* insert */
return true;
}
if (h(3j] == || § == empty)
return false; /* duplicate or table full */
}
int HSearch (int h [], int k)
{
int 1 = k % Size; /* hash function */
int j = 1i;
do
{
if (h[j] == empty || h[j] == k) return j;
j = (j + 1) % Size; /* rehash function */
} while (j != 1); /* search wrap around */
return false; /* table full */
}
Search()

We can use the function HSearch () to search for a given key in the hash table. We
shall look for the key in the table and if it is found it is returned via a reference
parameter, e. Firstly, the key is hashed and rehashed - may be because of a collision
during insertion — to obtain the address, 1.

This is done using HSearch (). If the hashed value contains an empty then the
key is not found in the table or the location may contain some other element, because of
the collision. In either case we can return false. Otherwise, simply extract the element
to the parameter e and return true. The function Search () appears in Program 9.9.

350 Chapter9 » Searching

Program 9.9
Search for a key
int Search (int h [], int k, int *e)
{
/* search k in hash table */
/* return true if k is found and e holds the element */
/* otherwise return false */
int j = HSearch(h, k);
if (j == empty || h[j] != k)
return false; /* no match */
*¢ = h([j];
return true;
}

Deletion from the hash table

This section discusses the issues with regard to the deletion of an element in the hash
table. This becomes important as it not just setting the hash address of the key to be
deleted to empty! The problem occurs when a collision occurred during an insertion.

h 0 1 2 3 4 5 6 7 8 9
[200 | 111 | | 23 [83 [85 | 56 | 33] 13] 9 |

Fig. 9.4 Hash table deletion

h 0 1 2 3 4 5 6 7 8 9

[200 111 [[23 NN 8 | 56 [33 [13] 9 |

Fig. 9.4a Element 83 is deleted

Let us show the deletion problem by considering the hash table as it appears in
Figure 9.4. Assume that the keys are inserted in the order 23, 83, 33 and 13 (shown in
bold letters). The element 23 goes to h[3] directly, next element 83 goes to h[4] after
rehashing, then element 33 goes to h[7], since h[5] and h[6] are already occupied and
finally 13 goes to h[8] because of collision at several places.

Now, we wish to delete key 83. The hash address we get is 3 and h[3] is not the
key and so rehashing is done which takes you to h[4]. This equals the key and hence
h[4] = empty (shown in Figure 9.4a).

Next we would like search for the key 33 (or 13). We invoke Search () function,
in which it returns false. Because, the hash address for 33 is 3 and it is already occupied
with 23 and next rehashing is done which yields 4 and since h[4] = -1, false is returned

